Círculo
Un círculo, en geometría, es el lugar geométrico de los puntos del plano cuya distancia a otro punto fijo, llamado centro, es menor o igual que una cantidad constante, llamada radio. En otras palabras, es la región del plano delimitada por una circunferencia y que posee un área definida.1
En castellano, la palabra círculo tiene varias acepciones, y se utiliza indistintamente círculo por circunferencia, que es la curva geométrica plana, cerrada, cuyos puntos son equidistantes del centro, y sólo posee longitud (es decir, el perímetro del círculo).2 "Aunque ambos conceptos están relacionados, no debe confundirse la circunferencia (línea curva) con el círculo (superficie)."3

[editar]
La palabra círculo proviene del latín circulus, que es el aumentativo de circus y significa "redondo".4
[]Términos
En castellano, en la gran mayoría de los textos de matemática círculo significa superficie plana limitada por una circunferencia.
En cartografía se utiliza el término círculo como sinónimo de circunferencia, en expresiones tales como círculo polar ártico.
Se suele utilizar el término geométrico disco, asociado al concepto círculo, en textos de topología, una rama de las matemáticas. En algunos textos de topología que, normalmente, son traducciones del inglés, se utiliza círculo como sinónimo de circunferencia.
En idioma inglés, la palabra circle6 expresa el concepto de circunferencia (curva cerrada plana equidistante del centro), mientras que circumference7 significa perímetro del círculo (la longitud de la circunferencia). Sin embargo, disk8 se asocia al concepto de círculo (superficie plana limitada por una circunferencia), también se utiliza la palabra "circle" con el significado "encerrar algo en un círculo".
Elementos del círculo
El círculo comparte con la circunferencia que lo delimita los siguientes elementos:
[]Puntos
Centro del círculo, que se corresponde con el centro de la circunferencia, del cual equidistan todos los puntos de esta.
[]Segmentos
Radio: es un segmento que une el centro con un punto de la circunferencia perimetral.
Diámetro: es un segmento que une dos puntos de la circunferencia pasando por el centro. El diámetro divide al círculo en dos partes iguales. También puede ser definido como dos radios que forman un ángulo de 180º, los radio se unen en el medio de la circunferencia.
Cuerda: es un segmento que une dos puntos de la circunferencia sin pasar por su centro. Una cuerda define un arco.
[]Rectas características
Recta secante: es la recta que corta al círculo en dos partes.
Recta tangente: es la recta que toca al círculo en un solo punto; es perpendicular al radio cuyo extremo es el punto de tangencia.
Recta exterior: es aquella recta que no toca ningún punto del círculo.
[editar]Ángulos
Existen diversos tipos de ángulos singulares en un círculo. Cuando un ángulo tiene su vértice en el centro del círculo, recibe el nombre de ángulo central, mientras que cuando los extremos y el vértice están sobre el círculo el ángulo se denomina inscrito. Un ángulo formado por una cuerda y una recta tangente se denomina semi-inscrito.
En un círculo de radio uno, la amplitud de un ángulo central coincide con la longitud del arco que subtiende, así, un ángulo central recto mide π/2 radianes, y la longitud del arco es π/2; si el radio mide r, el arco medirá r x π/2.
La longitud de un arco de ángulo central α, dado en grados sexagesimales, medirá 2π x r x α / 360.
Un ángulo inscrito mide la mitad del arco que subtiende, sin importar la posición del vértice. Un ángulo semi-inscrito mide la mitad del arco que se encuentra entre la cuerda y la tangente (véase arco capaz).
[]Curvas
Un círculo contiene infinitas circunferencias, siendo la más característica aquella que lo delimita, la circunferencia de radio máximo. Comparte con dicha circunferencia el arco, el segmento curvilíneo de puntos pertenecientes a la circunferencia de radio máximo.
]Superficies
El círculo también puede compartir con la circunferencia exterior los siguientes elementos:
Sector circular: es la superficie delimitada por un arco y los dos radios que contienen sus extremos.
Segmento circular: es la superficie limitada por un arco y su cuerda.
Semicírculo: es la superficie delimitada por un diámetro y media circunferencia exterior.
Corona circular: es la superficie delimitada entre dos circunferencias concéntricas.
Trapecio circular: es la superficie limitada por dos circunferencias y dos radios.
[Semicírculo
Se llama semicírculo a la mitad de un círculo.9 Es la figura geométrica plana (bidimensional) delimitada por un diámetro y la mitad de una circunferencia.
Su área es la mitad de la del círculo. El arco de un semicírculo siempre mide 180°, por ser la mitad de los 360° de un círculo.
[]Área del círculo
Existen numerosas fórmulas para calcular el área de un círculo. Un círculo de radio
, tendrá un área:

; en función del radio (r).
o
; en función del diámetro (d), pues
o
; en función de la longitud de la circunferencia máxima (C),
pues la longitud de dicha circunferencia es: 

- Área del círculo como superficie interior del polígono de infinitos lados
El área de un círculo se deduce sabiendo que la superficie interior de cualquier polígono regular es igual al producto entre el apotema y el perímetro de este polígono, es decir:
.

Si se considera la circunferencia como el polígono regular de infinitos lados, entonces el apotema coincide con el radio de la circunferencia y el perímetro con la longitud de la circunferencia. Por tanto el área interior es:
- Área del círculo como superficie triangular
Si en un círculo desplegamos todos sus anillos circulares, y los consideramos como rectángulos, se forma un triángulo rectángulo de altura r y base 2πr(siendo la longitud de la base la de la circunferencia perimetral).
El área A de este triángulo de altura r, será:
[]Perímetro del Círculo
El perímetro de un círculo es una circunferencia y su ecuación es:
(en función del radio).
o
(en función del diámetro).
No hay comentarios:
Publicar un comentario